CS6640 Computational Photography

10. Light Field Photography

© 2012 Steve Marschner

Choices in ray space

- Photography involves choosing sets of rays at exposure time
 - camera location
 - camera direction
 - aperture size
 - field of view
- These decisions are about which rays to measure and how to group them together

Example: camera focused at infinity

Choices in ray space

- Photography involves choosing sets of rays at exposure time
 - camera location
 - camera direction
 - aperture size
 - field of view
- These decisions are about which rays to measure and how to group them together

Example: distant camera focused at reference plane

Choices in ray space

- Photography involves choosing sets of rays at exposure time
 - camera location
 - camera direction
 - aperture size
 - field of view
- These decisions are about which rays to measure and how to group them together

Example: camera focused at finite distance

Not choosing

- Light field photography: do not choose rays at exposure time
- Measure all light available, without integrating or at least, integrating as little as possible
- Measure light flowing along all rays entering the camera
- Do any desired integration later

Radiance field

Measure radiance with a detector like this:

Radiance is a function of

where you position it (R^3) which way you point it (S^2) that amounts to 5 dimensions

- However, radiance is invariant along lines
- Radiance is a function of which line you put the detector on that amounts to 4 dimensions

Parameterizing lines

Linespace is topologically distinct from R4.

Therefore all these parameterizations have singularities or do not cover the whole space.

What does each one miss?

Light fields in graphics

- Sample radiance with a (u,v,s,t) 2-plane parameterization think with a signal processing mentality it's all about sampling and reconstructing this 4D function
- · Light Field [Levoy & Hanrahan 96] and Lumigraph [Gortler et al. 96]
- Plenoptic function [Adelson & Bergen 91]
- Integral Photography [Lippman 1908]

Capturing light fields

- First approach: moving cameras or camera arrays
- Moving camera vs. moving & aiming vs. moving & shifting moving & shifting gives (u,v,s,t) parameterization directly

Slices of a light field: (u,v) and (s,t)

Levoy & Hanrahan 96

Slices of a light field: (u,s)

What to do with light field

- Obvious: move camera around on (u,v) plane
 - interpolate between images quality will depend on sampling rate relative to aperture size
- In 4D space this is bilinear interpolation along the u and v directions only

Marc Levoy

Marc Levoy

Marc Levoy

What to do with light field

- Less obvious: move the camera anywhere you want after all, you have all the rays recorded separately quality will depend on sampling rate relative to aperture size
- In 4D space this is slicing along a non-axis-aligned plane

What to do with light field

- Less obvious: move the camera anywhere you want
 after all, you have all the rays recorded separately
 quality will depend on sampling rate relative to aperture size
- In 4D space this is slicing along a non-axis-aligned plane

Marc Levoy

Marc Levoy

Marc Levoy

Marc Levoy

Marc Levoy

Marc Levoy

What to do with light field

- Also perhaps non-obvious: create shallow depth of field
- Synthetic aperture integration

integrate over rays through an imaginary large aperture (cf. synthetic aperture radar)

Vaish et al CVPR 04

Light field camera native image: (s,t) is outer loop; (u,v) is inner loop

[Ren Ng thesis]

Characteristic behavior: objects at the focus plane become constant-colored circles; more distant points look like inverted views of a small area of the image.

Transposed image: (u,v) is the outer loop, (s,t) is the inner loop.

[Ren Ng thesis]

Characteristic behavior: the constant-uv images correspond to cameras located at different positions in the lens's entrance pupil. Note vertical parallax between these two images.

Epipolar plane format: (v,t) is the outer loop and (s,u) is the inner loop.

Characteristic behavior: points in scene become lines with slope depending on distance. Objects at focus plane produce vertical features; more distant objects produce negative slopes.

closer viewpoint ($\alpha = 0.9$)

farther viewpoint ($\alpha = 1.1$)

Cornell **CS6640** Fall 2012

closer viewpoint ($\alpha = 0.9$)

farther viewpoint ($\alpha = 1.1$)

Cornell **CS6640** Fall 2012

closer focus ($\alpha = 0.9$)

closer focus

farther focus ($\alpha = 1.1$)

closer focus ($\alpha = 0.9$)

closer focus

farther focus ($\alpha = 1.1$)

closer focus ($\alpha = 0.9$)

closer focus

farther focus ($\alpha = 1.1$)

Depth of field and sub-apertures

Cornell **CS6640** Fall 2012